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Thermophoretic and ponderomotive forces in a linear cluster of particles
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We investigate amplification of thermophoretic and ponderomotive forces caused by renormalization of
static fields in linear clusters of particles with scale separation. We found analytically the dependence of the
forces acting on the particles in a cluster as a function of the number of particles in a cluster and material
characteristics of the particles and the surrounding fluid. We analytically determined the velocity of stationary
motion of particles, velocity distribution in a surrounding viscous fluid, and the thermophoretic force when the
particles remain stationary due to the applied constraint forces.
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I. INTRODUCTION

Behavior of particles in liquid or gaseous media in t
presence of external fields has many facets and is of inte
in various applications~see, e.g.,@1# and reference therein!.
One of these problems, namely, the dynamics of the
semble of particles in a viscous fluid, has a long history~see,
e.g.,@2–4# and references therein!. The principal difficulty in
solving this problem is associated with the necessity to
count for the long range many body hydrodynamic inter
tion among particles. This problem still remains a challen
not only to analytical but also approximate and numeri
methods@5#. In this study, we considered a linear cluster
particles whereby the size of each particle is strongly diff
ent from the size of all other particles. In this particular ca
the analytical solution can be derived since one has to
into account only the influence of a larger particle on t
adjacent smaller particle in a cluster while the opposite ef
can be neglected. The considered system is not only of
demic interest but also of technological interest since
showed below that it can be used for extraction of sm
particles from a suspension.

We investigated the motion of a cluster of particles in
viscous host medium with an imposed external tempera
gradient. Thermophoresis, i.e., motion of particles due
temperature gradient in a host medium, is of great sign
cance in technology and various naturally occurring pheno
ena~see Ref.@6# and references therein!. Thus, e.g., thermo-
phoretic scavenging of aerosols by cloud droplets plays
important role in pollutants transport. The thermophore
interaction of particles is relevant in studies of nonlinear o
tical effects in ferrofluids@7# and thermomagnetophoret
transport in ferrofluid colloids@8#. Spatially ordered struc
tures in the arrangement of small liquid droplets or so
particles embedded in a thermal plasma were observe
several experiments~see, e.g.,@9# and references therein!.
Recently it was suggested that thermophoretic forces m
play a crucial role in the formation of these structures@10#.

In order to define the problem more accurately, let
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consider a cluster consisting of N spherical particles loca

at the line in the imposed external fieldAW . This field can be
electrostatic field or magnetostatic field, electric current w

density jW, temperature gradient, etc. It is assumed that co
ficient of response of the particle to the corresponding fi
k1 ~e.g., coefficient of thermal conductivity, dielectric pe
mittivity, etc.! is essentially different from the response c
efficient of the host mediumk0 so thata5k0 /k1Þ1. We
will assume also that the sizes of the particlesR1 ,R2 ,...,RN
satisfy the conditionR1@R2@...@RN and that the distance
between the adjacent particles is much larger than the siz
the smaller particle and less than the size of the larger
ticle. Under these conditions, there occurs strong amplifi
tion of the static field in small spatial scales@11#. Thus, the
static field in the vicinity of a small particle with a radiusRk
is by the factorlk stronger than the applied external fie
where the coefficientl depends upon the orientation of th
linear cluster with respect to the direction of the extern
field and upon the parametera. Taking into account this
amplification, we determined the velocity distribution in
viscous fluid containingN particles, with velocities of the
particles and thermophoretic forces acting upon the partic

This paper is organized as follows. In Sec. II we descr
the general scheme for calculating the static field in a lin
cluster of particles. In Sec. III assuming that the field calc
lated in Sec. II corresponds to the electrostatic field, we c
culated thermodynamic pressure inside thekth liquid par-
ticle. A coefficienta in this case is defined asa5«0 /«1 ,
where«0 and «1 are permittivities of the host medium an
liquid particles, respectively. It is demonstrated that if t
coefficienta satisfies the conditiona!1, the thermodynamic
pressure inside small liquid particles is considerably l
than the pressure inside the larger particles in the cluste
Sec. IV assuming that the calculated field describes the
tribution of a temperature gradient inside a system subjec
to the external temperature gradientAW , we calculated the
velocities of the stationary motion of particlesVW 1 ,VW 2 ,...VW N .
In the same section, we also considered another situatio
which the particles remain stationary in spite of the appl
temperature gradient due to the applied constraint forces
the latter case, we calculated the thermophoretic forces
ing on the particle, which determine the constraint forces t
©2001 The American Physical Society02-1
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must be applied to each particle in order to keep it station
in the field of the external temperature gradient.

II. MATHEMATICAL MODEL

Consider a system comprising spherical particles with
dii Ri ,i 51,...,N with coefficient of response to the stat
field k1 immersed into the host medium with response co
ficient k0 that differs fromk1 . The system is subjected to th
external potential fieldw that is determined by the equatio

¹W 2w50 ~1!

with boundary conditions¹W w5AW asurW2cW i u→`, wherecW i is
radius vector of the center of thei th particle. The potentialw
is continuous and the flux of the fieldk¹W w at the surface of
the i th particle satisfies the condition

nW i•@k¹W w# i50, ~2!

wherenW i is a unit external normal vector at the surface of t
i th particle,@b# i5b i

12b i
2 andb i

6 are the magnitudes ofb
at the external and internal surfaces, respectively.

Assume that the radii of the particlesRi and the distances
between the surfaces of the particlesdi ,i 11 satisfy the fol-
lowing condition:

Ri@di ,i 11@Ri 11 . ~3!

Assume also that the external field is homogeneousAW
5const, and represent the potentialw as follows:

w5AW •rW1(
i 51

N

w̃ i~rW2cW i !. ~4!

The boundary value problem~1!–~2! can be solved by deter
mining w̃1 ,w̃2 ,...,w̃N sequentially. To this end, let us no
that the distortion of the field produced by thei th particle
outside the particle is;Ri

3/urW2cW i u3, and condition~3! im-
plies that in determining potentialw̃ i 21 we can neglect the
effect of thei th particle. Then condition~2! yields the fol-
lowing boundary condition for the potentialw̃k :

nW k•@k¹W w̃#k5~k12k0!nW k•(
i 51

k21

¹W w̃ i1~k12k0!~nW k•AW !

~5!

and w̃k→0 asurW2cW ku→`.
Now let us solve Eqs.~1!, ~4!, ~5!. The potentialw̃1 is

known ~see, e.g., Ref.@12#, Chap. 5, Sec. 50!:

w̃15jFu2~x1!1u1~x1!
R1

3

urW2cW1u3GAW •~rW2cW1!,

~6!

j5
k02k1

k112k0
,

where u6(z)[u(6z), u(x) is Heaviside function andx1
5urW2cW1u2R1 . Now we can determine the potentialw̃2 . Ac-
06140
ry

-
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cording to Eq.~5!, we must determine potentialw̃1 at the
surface of the second particleurW2cW2u5R2 . To this end, let
us represent the potentialw̃1 with respect to the center of th
second particlecW2 . In the leading order in the vicinity of the
surfaceurW2cW2u2R2!ucW22cW1u, the potentialw̃1 can be writ-
ten as

w̃15y1
3j~rW2cW2!•@AW 23~AW •SW 12!SW 12#, SW 125

cW12cW2

ucW12cW2u
,

~7!

y15
R1

ucW12cW2u
.

Hereafter we will consider the case when the centers o
particles are located on the straight line. Let us analyze
of the most simple cases, namely, when the particles
aligned in the direction of the field andSW 1256AW /uAW u, and,
the second one, whenSW 12•AW 50. Note that condition~3! im-
plies thatyi

35Ri
3/ucW i2cW i 11u>1. In the first case, using th

boundary condition~5!, we obtain an expression similar t
Eq. ~6!:

w̃25jFu2~x2!1u1~x2!
R2

3

urW2cW2u3GAW 1•~rW2cW2!, ~8!

whereAW 15AW (122j)5AW 3/(112a), x25urW2cW2u2R2 ,
a5k0 /k1 .

Similarly, we can determine a potentialw̃3 . To this end,
we rewrite potentialsw̃1 and w̃2 in the vicinity urW2cW3u
!ucW12cW3u and urW2cW3u!ucW22cW3u. Since condition~3! im-
plies thatR2

3/ucW32cW2u3'R1
3/ucW12cW3u3'1, we obtain

w̃35jFu2~x3!1u1~x3!
R3

3

urW2cW3u3G S 3

112a D 2

AW •~rW2cW3!,

Repeating the above procedure, we find that

w̃k5jFu2~xk!1u1~xk!
Rk

3

urW2cW ku3G S 3

112a D k21

AW •~rW2cW k!.

~9!

Equations~4! and~9! determine the solution of the bound
ary value problem~1!-~2!. Using these equations, we obta
the following formula for the strength of the fieldEW 5

2¹W w:

EW 5AW 1AW j(
i 51

N Fu2~xi !1u1~xi !
Ri

3

urW2cW i u3
G S 3

112a D i 21

2j(
i 51

N

u1~xi !
Ri

3

urW2cW i u3 S 3

112a D i 21

3nW i~AW •nW i !. ~10!

The characteristic feature of Eq.~10! is that due to condition
~3! the contributions of various terms change by the orde
magnitude depending on the location. In order to calcul
the field using Eq.~10! at the arbitrary point in space withou
exceeding the accuracy, one must neglect the small te
2-2
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according to condition~3!. Let us determine the fieldEW in the
domainurW2cW ku;Rk . In the regionxk5urW2cW ku2Rk,0, Eq.
~10! yields

EW k
in5aS 3

112a D k

AW , ~11!

and in the regionxk5urW2cW ku2Rk.0

EW k
out5S 3

112a D k21FAW 1j
Rk

3

urW2cW ku3
@AW 23nW k~AW •nW k!#G .

~12!

Equation ~12! implies that the normal component of th
strength of the field at the external surface of thekth particle,

Ek,n
out5S 3

112a D k

An , ~13!

increases by a factor 3k whena!1.
Similarly, one can solve a problem when the particles

aligned normally to the direction of the field. In this case f
the strength of the field inside thekth particle instead of Eq
~11! we obtain

EW k
in5S 3a

112a D k

AW , ~14!

and for the field outside thekth particle instead of Eq.~12!,
we obtain

EW k
out5S 3a

112a D k21FAW 1j
Rk

3

urW2cW ku3
@AW 23nW k~AW •nW k!#G .

~15!

The normal component of the strength of the field at
external surface of thekth particle is

Ek,n
out5

3

112a S 3a

112a D k21

An

and the tangential component

Ek,t
out5Ek,t

in 5S 3a

112a D k

At .

III. RENORMALIZATION OF THE THERMODYNAMIC
PRESSURE IN PARTICLES IN THE LINEAR

CLUSTER IN THE EXTERNAL ELECTRIC FIELD

Using the above results, let us determine ponderomo
forces acting on the particle in the cluster in electric fieldEW
when a particle is homogeneous and the charge of the
ticle is zero. If the total energy of the electric field,

W5E «EW 2

8p
dV, ~16!

depends upon the coordinate of the center of mass of a
ticle cW i , then the ponderomotive force with a magnitude
06140
e
r

e

e
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FW i52
]W

]cW i

acts on the particle and causes its translational motion. If
integral in Eq.~16! can be represented as a sum of integr
that are invariant with respect to the transformationrW→rW
2cW i , then the ponderomotive forces cannot cause the tra
lational motion of the particle. It is exactly the situatio
which occurs in the considered configuration in the fram
work of the adopted accuracy. However, already in this
proximation the particle is subjected to compressive or t
sile stresses that depend upon the location of the par
inside a cluster, and in this case the main effect is the re
malization of a thermodynamic pressure. In principle, t
thermodynamic pressure can be determined by using
~16! and variational principles of thermodynamics~for de-
tails see Ref.@11#!. However, in this study we will determine
pressure inside thekth particle by using the formula for a
stress tensor and condition of mechanical equilibrium~see
Ref. @13#, Chap. 2, Sec. 15!. The expression for the stres
tensor reads

s ik52Fp0~r,T!1
«EW 2

8p
Gd ik1

«EiEk

4p
.

Condition for continuity of the normal component of th
stress tensor at the surface of the particle@snn#k50 yields

Dpk5Dk,n~Ek,n
in 2Ek,n

out!1
Ek,t

2

8p
~«02«1!, ~17!

whereDW 5«EW is an electric induction,Dpk5pin2pout is a
difference between the thermodynamic pressures inside
kth particle and in the host medium in the vicinity of th
particle. Substituting the obtained expressions given abo
for the normal and tangential components of the strength
the electric fieldEn andEt into Eq. ~17!, we obtain

Dpk5
9j««0E0

2~l2!k21

8p S 1

112a«
cos2 u1

a«

112a«
sin2 u D .

~18!

Here E0 is the strength of the external field, cosu

5(nW•EW 0)/uEW 0u, a«5«0 /«1 , j«5(a«21)/(112a«), and l
depends upon the geometry. When the linear cluste
aligned with the external field,l5l i , and when it is normal
to the direction of external field,l5l' ,

l i5
3

112a«
, l'5

3a«

112a«
. ~19!

Define thermodynamic pressure averaged over the partic
volume as

^Dpk&V5
1

V E Dpk

d3rW

~2p!3 ,

then Eq.~18! yields
2-3
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YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E64 061402
^Dpk&V5
3j«0E0

2

8p
~l2!k21.

The latter equation was derived in Ref.@11# using a different
approach. In Ref.@11# it was showed also that renormaliz
tion of the thermodynamic pressure results in substan
changes in the dynamics of phase transitions of the first k
in linear clusters of particles in the presence of electric fie

Whena!1, j'21, and^Dpk&V'2(9k/24p)«0E0
2, i.e.,

the pressure in the particle decreases exponentially whe
ordinal number in the cluster grows.

IV. THERMOPHORETIC FORCES IN A LINEAR
CLUSTER OF PARTICLES

Another kind of fields and forces that are renormalized
the above-described geometry@see Eq. ~3!# are thermo-
phoretic forces acting upon macroscopic particles in ga
The origin of these forces was discussed extensively in
literature~see, e.g., Refs.@6,14# and references therein!. The
mechanism of thermophoretic forces in gases is associ
with a temperature gradient that results in the additional m
mentum flux from gas to particle. Consider a case with re
tively large particles of sizesRi@ l , where l is a free path
length of gas molecules. In this study, we seek the solu
for times that are much larger than the Stokes timetS so that
all particles attain their stationary velocities in their moti
due to the thermophoretic forces. We will use the system
Stokes equations and neglect convective transfer of the
energy and buoyancy forces, which can be accounted
without essential changes in the developed approach.
problem will be solved in the zeroth approximation in Knu
sen number,Kn5 l /R!1. Thus, the system of governin
equations reads

¹W p5h¹W 2VW , ¹W •VW 50, ¹W 2T50, ~20!

where p is pressure andh is a kinematic viscosity. The
boundary conditions for temperatureT correspond to those
for potentialw above, and the boundary conditions for velo
ity VW (rW) will be presented further. In the stationary regim
the resultant force acting on the particle isFW 50. Here one
has to distinguish between the two cases. The first on
when a particle moves uniformly in the laboratory fram
with velocity uW p . The second case is when a particle is s
tionary due to the action of the constraint force that comp
sates the thermophoretic force anduW p50W .

Let us consider the first case. Due to condition~3!, we can
neglect the effects of small particles in calculating the fi
of the large particle. Condition~3! also implies that in the
vicinity of the kth particle in the scales of the order of th
particle’s size, the velocity field formed by the precedingk
21 particles can be considered as homogeneous. Let thekth
particle move with the velocityuW k . Then, in the frame at-
tached to this particle, the velocity field in the vicinity of th
kth particle can be written as follows~see Ref.@12#, Chap. 2,
Sec. 20!:
06140
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VW k~rW !5VW k`2uW k1¹W 3¹W 3 f k~rW !AW , ~21!

whereAW is a temperature gradient far away from the clust
VW k` is the asymptotic value of the velocity of the gas in t
laboratory frame in the region determined by the conditio
urW2cW ku@Rk , urW2cW ku!ucW k2cW k21u, and

f k~rW !5akurW2cW ku1
bk

urW2cW ku
, ~22!

where the coefficientsak and bk are determined from the
boundary conditions.

In the frame attached to thekth particle, the boundary
conditions read

Vk,n50, Vk,t5m~¹W Tk!t , ¹W T05AW , ~23!

whereVk,n and Vk,t are the normal and tangential comp
nents of the gas velocity at the surface ofkth particle, re-
spectively. According to the results obtained in Sec. II,

~¹W Tk!t5
3a

112a
lk21At , ~24!

where the coefficientl can assume two values depending
the orientation of the cluster@see Eq.~19!#, coefficienta is
determined above@see Eq.~8!#, and coefficientsk0 andk1 in
the formula fora are thermal conductivities of the medium
and the particles, respectively. The coefficient of thermal s
m ~see Ref.@14#, Chap. 1, Sec. 14! is assumed to be the sam
for all particles.

We will use Eqs.~19!, ~24! and as before consider onl
the cases where a cluster is aligned with vectorAW or normal
to it. These assumptions simplify the analysis of the obtain
results. The force acting on thekth particle and the pressur
in its vicinity are determined by the velocity field@Eqs.~21!,
~22!# and are given by the following expressions~see@12#,
Chap. 2, Sec. 20!:

FW k58pakhAW , pk5p01h~AW •¹W !@¹W 2f k~rW !#. ~25!

Since a particle moves with a constant velocityFW 50, and
according to Eqs.~22!, ~25!, ak50, p5p0 . Taking into ac-
count the latter relations, Eqs.~21! can be rewritten as

VW k~rW !5VW k`2uW k1
bk

urW2cW ku3 @3nW k~AW •nW k!2AW #, ~26!

wherenW k5(rW2cW k)/urW2cW ku. In order to determineVW k` , let
us note that with the required accuracy@see Eq.~3!#,

VW k`5VW g,k21~rW ! ~27!

for urW2cW k21u'Rk , whereVW g,k21(rW) is a velocity of gas in
the vicinity of the (k21)th particle in the laboratory frame

Let us consider a case where a cluster is aligned wit
vectorAW . Equation~26! and the above arguments imply th
2-4
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VW k`5VW k21,̀ 1
2bk21

Rk21
3 AW . ~28!

The boundary conditions~23! and Eqs.~24!, ~26!–~28! yield

uW k2VW k`52
2

3
mkAW , bk52

mkRk
3

3
, ~29!

where

mk5m
3a

112a
lk21 and l5l i5

3

112a
.

Solution of the system of Eqs.~28!, ~29! reads

VW k`2VW 1`52
2

3
m

3a

112a

12lk21

12l
AW ,

uW k2VW 1`52
2

3
m

3a

112a

12lk

12l
AW , ~30!

whereVW 1` is the velocity of the surrounding fluid far awa
from the cluster in a laboratory frame. ForVW 1`50 and k
51, Eq.~30! recovers the expression for the thermophore
velocity of a single particle due to an imposed temperat
gradient. The physical meaning of the obtained results
quite transparent. It implies that the velocity of thekth par-
ticle is the sum of the velocity due to a local temperatu
gradient (¹W T)k and velocity of a fluid induced by motion o
the preceding particles in the cluster. In Fig. 1, we show
velocity of thekth particle in the cluster normalized by 2mA.

Now consider the case where a cluster is aligned in
direction normal to the field gradient. It must be noted tha
contrast to the previous case, such geometry has a restri
physical meaning since configuration of the cluster var
during motion in this case. Nevertheless, it allows us to
tain some useful information about the behavior of partic

FIG. 1. Dependence of the normalized velocity of thekth par-
ticle vs. the ratio of thermal conductivities of the host medium a
of the particlea5k0 /k1 . Cluster is aligned with the external tem

perature gradientAW .
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in gaseous medium with an imposed temperature gradi
The only difference from the previous case is that instead
Eq. ~28! we have

VW k`5VW k21,̀ 2
bk21

Rk21
3 AW , l5l'5

3a

112a
.

Then, instead of solution~30!, we obtain that

VW k`2VW 1`5
m

3

3a

112a

12lk21

12l
AW ,

uW k2VW 1`5
m

3

3a

112a S 12lk21

12l
22lk21DAW .

The difference from the previous case~30! is that here the
velocity of the flow induced by preceding particles is d
rected in the opposite direction to the velocity caused by
local temperature gradient (¹W T)k . In Fig. 2, we show the
velocity of thekth particle normalized bymA.

The case with stationary particles is the most simple
the experimental investigation of these phenomena. In
case, the particle’s velocitiesuW k50 and the velocity field in
the vicinity of thekth particle, i.e., forurW2cW ku;Rk , can be
written similarly to Eqs.~21!, ~22!. Thus, we can presen
VW k(rW) as follows:

VW k~rW !5bkAW 2
ak

urW2cW ku
@AW 1nW k~AW •nW k!#

1
bk

urW2cW ku3 @3nW k~AW •nW k!2AW #. ~31!

Note that the constant term in formula~31! can be written as
bkAW , where coefficientbk is to be determined, only in two
cases, namely, when a cluster is aligned with vectorAW or
normal to it.

Hereafter we will assume that, far away from the clus
the gas is at rest so thatb150. Then, using the boundar

d

FIG. 2. Dependence of the normalized velocity of thekth par-
ticle vs. the ratio of thermal conductivities of the host medium a
of the particlea5k0 /k1 . Cluster is normal to the external tem

perature gradientAW .
2-5
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conditions~23! for the velocity of the first particle, we obtai
the known result~see Ref.@8#, Chap. 1, Sec. 14!,

VW 1~rW !52
a1

urW2cW1u F @AW 1nW 1~AW •nW 1!#2
R1

2

urW2cW1u2

3@3nW 1~AW •nW 1!2AW #G , ~32!

where a152m1R1/2. This velocity implies the forceFW 1

58pa1hAW and a pressure fieldp152ha1(AW •¹W )1/urW2cW1u
1p0 . In the regionurW2cW1u;R1 ,

VW 152m1A sinu1tW1 , tW k5
]nk

]uk
. ~33!

The total force applied on the particle is determined by t
contributions. The first one is due to the pressure grad
induced by preceding particles, and the second one is du
the gas flow caused by an imposed temperature grad
These two forces can be considered separately, and the
pend differently on the particle size. The force due to pr
sure gradient}Rk

3 and sharply decreases with the decrease
the particle size. Let us determine the force induced by
gas flow. First consider the case when particles are alig
with the imposed temperature gradientAW . Equation~33! im-
plies that the first particle does not induce a flow in t
direction of a temperature gradient. Therefore, the sec
particle is not subjected to the external flow caused by
first particle, and in Eq.~31! for k52, b250. The latter im-
plies thatbk50 for all k. Thus gas velocity in the vicinity of
the kth particleVW k(rW) is given by Eq.~32! where index 1 is
replaced byk, and a forceFW k is determined by the following
formula:

FW k5212pmh
a

112a S 3

112a D k21

RkAW . ~34!

For a givenk, the force applied on the particle attains
maximum whena51/2(k21):

FW k,max52FW 0

3k21

2~k21! S 12
1

kD k

, FW 0512pmhAW Rk.

~35!

In the limit k@1,

FW k,max52FW 0

3k21

2e~k21!
.

Note that in the case of one particle the maximum force
attained whena@1, i.e., when thermal conductivity of a ho
mediumk0 is much larger than the thermal conductivity of
particle k1 . However, in a cluster with a large number
particles, the maximum force is applied on the particles w
a high thermal conductivitya!1. In Fig. 3 we show the
dependence ofFk /F0 vs a.

Now consider a case where stationary particles
aligned in the direction normal to the temperature gradie
06140
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to

nt.
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-
f
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e

s

h

e
t.

In this case, Eq.~33! implies that there exists a flow induce
by the first particleVW 15m1AW . Therefore in this case, apa
from the local flow, there exists a flow induced by the pr
ceding particles. Since due to condition~3! VW k21(rW) at urW
2cW k21u;Rk21 is an asymptotic value forVW k(rW) at urW2cW ku
@Rk ,

bk5bk212S ak21

Rk21
1

bk21

Rk21
3 D . ~36!

The boundary conditions~23! yield

bk22S ak

Rk
2

bk

Rk
3D 50, bk2S ak

Rk
1

bk

Rk
3D 5mk . ~37!

Solving Eqs.~36! and ~37! we find

bk5mk215mS 3a

112a D k21

,

ak5
3

4

mRk

~112a! S 3a

112a D k21

,

bk5ak

124a

3
Rk

2. ~38!

The forceFW 1 is still determined by Eq.~34! for k51, and
forces applied on the other particles in the clusterFW k are
determined by the following expression:

FW k56pmh
1

112a S 3a

112a D k21

RkAW , k>2. ~39!

For a givenk the magnitude ofa providing the maximum
value ofFW k is a5(k21)/2 and

FW k,max5
FW 0

2 S 3

2D k21 1

~k21! S 12
1

kD k

, ~40!

FIG. 3. Dependence of the normalized thermophoretic force
ing on thekth particle vs. the ratio of thermal conductivities of th
host medium and of the particlea5k0 /k1 . Cluster is aligned with

the external temperature gradientAW .
2-6
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whereFW 0 is determined above. In Fig. 4, we show the d
pendence ofFk /F0 vs a. We will not write a general expres
sion for velocityVW k(rW), but present expressions for norm
and tangential components of the velocity in the basic
(nW k ,tW k) normalized bymAn andmAt , respectively:

Vn

mAn
5S 3a

112a D k21F12
3

2

Rk

urW2cW ku
1

112a

3S 12
124a

3

Rk
2

urW2cW ku2
D G ,

FIG. 4. Dependence of the normalized thermophoretic force
ing on thekth particle vs. the ratio of thermal conductivities of th
host medium and of the particlea5k0 /k1 . Cluster is normal to the

external temperature gradientAW .
,

-

,

n

em
.

06140
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et

Vt

mAt
5S 3a

112a D k21F12
3

4

Rk

urW2cW ku
1

112a

3S 11
124a

3

Rk
2

urW2cW ku2
D G . ~41!

Thus, the magnitude of velocity of gas increases in sm
scales so thatV;@3a/(112a)#k21A.

V. CONCLUSIONS

In this study, we showed that a linear cluster of partic
consisting ofN spherical particles embedded in a visco
host medium amplifies various static fields. The simple
ometry considered in this investigation allows us to expe
mentally verify the considered effects. The predicted effe
can also be of interest for various environmental and tech
logical applications, e.g., dynamics of atmospheric and co
bustion aerosols, soot formation, nanotechnology, etc.
obtained results imply the feasibility of separating fine p
ticles from the suspension by injecting into the mixture t
particles with the intermediate size.
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