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Thermophoretic and ponderomotive forces in a linear cluster of particles
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We investigate amplification of thermophoretic and ponderomotive forces caused by renormalization of
static fields in linear clusters of particles with scale separation. We found analytically the dependence of the
forces acting on the particles in a cluster as a function of the number of particles in a cluster and material
characteristics of the particles and the surrounding fluid. We analytically determined the velocity of stationary
motion of particles, velocity distribution in a surrounding viscous fluid, and the thermophoretic force when the
particles remain stationary due to the applied constraint forces.
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I. INTRODUCTION consider a cluster consisting of N spherical particles located

_ _ o o at the line in the imposed external field This field can be
Behavior of particles in liquid or gaseous media in theglectrostatic field or magnetostatic field, electric current with

presence of external fields has many facets and is of imereﬁbnsityf, temperature gradient, etc. It is assumed that coef-

ion vari?utsh applicatit()JIn$see, e.g.[ll] ?r?d aeferen_ce th;art?]in ficient of response of the particle to the corresponding field
he of these problems, namely, the dynamics ot the enl—(l (e.g., coefficient of thermal conductivity, dielectric per-

semble of particles in a viscous fluid, has a long his{see, L . , .
: o e ; mittivity, etc.) is essentially different from the response co-
e.g.,[2—4] and references thergifThe principal difficulty in efficient of the host mediunk, so thata=ko/x,# 1. We

solving this problem is associated with the necessity to aC il assume also that the sizes of the partidRisR R
count for the Ior_wg range many body hydrodynamic ir]terac_satisfy the conditiorR;>R,>...>Ry and that thez’cili'é{ar,\\‘ce
tion among particles. This problem still remains a chaIIengeD 1727 e N

. . .~ between the adjacent particles is much larger than the size of
not only to analytical but also approximate and numerical

. . . the smaller particle and less than the size of the larger par-

methodg5]. In this study, we considered a linear cluster of . - o
. ; L .. __ticle. Under these conditions, there occurs strong amplifica-
particles whereby the size of each particle is strongly differ-

ent from the size of all other particles. In this particular casetIon of the static field in small spatial scalgkl]. Thus, the

the analytical solution can be derived since one has to taklst"jll;IC Ifédfg]cttgre)\\‘glgtrr]gﬁ O;ratﬁamnaltlh%aglCl?igvdm:a)ier?r?;ﬁiel d
into account only the influence of a larger particle on the y 9 PP

adjacent smaller particle in a cluster while the opposite effec here the coefficient depends upon the orientation of the

can be neglected. The considered system is not only of acancar cluster with respect to the direction of the external

demic interest but also of technological interest since a leld and upon the parameter. Taking into account this

showed below that it can be used for extraction of smalegg'ggafmg’ gz)itgﬁ]tiirm'nz?ti:::sV?/\'/ﬁﬁ'%géﬁ;g:“g? tlhnea
particles from a suspension. N p '

We investigated the motion of a cluster of particles in aparticles and thermophoretic forces acting upon the particles.

viscous host medium with an imposed external temperatur%eThésngfge;Cﬁe%geag fi(;@a;?il:]()wtsr{;nséﬁg' f:tlalvt\jleindzslfr:faer
gradient. Thermophoresis, i.e., motion of particles due to 9 9

temperature gradient in a host medium, is of great Signifi_cluster of particles. In Sec. Ill assuming that the field calcu-

cance in technology and various naturally occurring phenoml—""ted in Sec. II corresponds fo the electrostatic field, we cal-
ena(see Ref[6] and references thergiriThus, e.g., thermo- culated thermodynamic pressure inside Hib liquid par-

- - jcle. A coefficienta in this case is defined ag=¢g/¢e
horetic scavenging of aerosols by cloud droplets plays aHC N 071
P ging y b pay whereey and e, are permittivities of the host medium and

important role in pollutants transport. The thermophoreticl_ » el ivelv. It is d wrated that if th
interaction of particles is relevant in studies of nonlinear op-'d4'¢ particies, réspectively. 1t 1S demonstrated that 1 the

tical effects in ferrofluids[7] and thermomagnetophoretic coefficienta satisfies the condition<1, the thermodynamic

transport in ferrofluid colloidg8]. Spatially ordered struc- P'€SSUr€ inside sr_nal_l liquid particles _is co_nsiderably less
tures in the arrangement of small liquid droplets or SOIiOIthan the pressure inside the larger particles in the cluster. In

particles embedded in a thermal plasma were observed iﬁec. .IV assuming that the calqulatgd field describes th_e dis-
several experimentésee, e.g.[9] and references therain tribution of a temperature gradient |r15|de a system subjected
Recently it was suggested that thermophoretic forces mafp the external temperature gradiehf we calculated the
play a crucial role in the formation of these structur&sg]. velocities of the stationary motion of particleg,V,,...Vy.

In order to define the problem more accurately, let usin the same section, we also considered another situation in
which the particles remain stationary in spite of the applied
temperature gradient due to the applied constraint forces. In

*Email address: yuli@menix.bgu.ac.il the latter case, we calculated the thermophoretic forces act-
"E-mail address: elperin@menix.bgu.ac.il ing on the particle, which determine the constraint forces that
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must be applied to each particle in order to keep it stationargording to Eq.(5), we must determine potentig, at the

in the field of the external temperature gradient.

Il. MATHEMATICAL MODEL

surface of the second particlé—¢,|=R,. To this end, let
us represent the potenti@l, with respect to the center of the
second particl€,. In the leading order in the vicinity of the
surface|r—&,| — R,<|€,— C,|, the potentiakp; can be writ-

Consider a system comprising spherical particles with razgy a5

dii R;,i=1,...N with coefficient of response to the static

field x, immersed into the host medium with response coef-
ficient « that differs from«, . The system is subjected to the

external potential fieldp that is determined by the equation

V29=0 (1)
with boundary condition¥ ¢ =A as|F—&;|— =, whereg; is
radius vector of the center of théh particle. The potentiap
is continuous and the flux of the fiekV ¢ at the surface of
theith particle satisfies the condition

f,-[«Ve]i=0, ()

1

(e}
O

2

O1=Y3E(T—Cy) - [A—=3(A-S19)S1,], Si==—

1

o
(e}

2|’
()
Ry

[C1=Cyf

y1=

Hereafter we will consider the case when the centers of all
particles are located on the straight line. Let us analyze two
of the most simple cases, namely, when the particles are
aligned in the direction of the field ar§,,= +A/|A|, and,
the second one, whe®y,- A=0. Note that conditior{3) im-
plies thaty>=R?/|¢,— &, 4|=1. In the first case, using the

wheren; is a unit external normal vector at the surface of theboundary condition(5), we obtain an expression similar to

ith particle,[ 8];=8;"—B; andB;" are the magnitudes @&
at the external and internal surfaces, respectively.

Assume that the radii of the particl&s and the distances
between the surfaces of the particlds ., satisfy the fol-
lowing condition:

Ri>dii+1>Ri+1. 3
Assume also that the external field is homogene@us
=const, and represent the potentahs follows:

N
p=AT+ 2 @i(F=C). @
The boundary value problefd)—(2) can be solved by deter-
mining @4, ®,,...,¢N Sequentially. To this end, let us note
that the distortion of the field produced by thia particle
outside the particle is-R¥/|F—¢;|°, and condition(3) im-
plies that in determining potenti&,; , we can neglect the
effect of theith particle. Then conditiori2) yields the fol-
lowing boundary condition for the potentiai, :

k=1
i [kV @ Je= (k1= ko) 2, Vi (1= wo) (i A)
(5)
andg,—0 as|f—C|— .

Now let us solve Egs(1), (4), (5). The potentialp; is
known (see, e.g., Ref.12], Chap. 5, Sec. 50

3
o1=¢ 0_(x1>+0+(x1>@ A-(F—6yp),
(6)

Ko™ K1

k1t 2k

where 6. (z)=60(*z), 6(x) is Heaviside function anck,
=|F—¢&;|—R;. Now we can determine the potenti}. Ac-

Eq. (6):

3
2 >

P,=¢ e,(x2>+e+(x2>mg Ay (T—Cy),

whereA;=A(1-2&)=A3/(1+2a), X,=|F—&)|—Ry,
a=kqlKkq.

Similarly, we can determine a potenti@k. To this end,
we rewrite potentialsp; and @, in the vicinity |F— ¢
<|G,—C3| and |[F—¢E;|<|E,—C5]. Since condition(3) im-
plies thatR3/|E;— &,|°~R3/|€,— &;5|°~1, we obtain
2

>

A-(F—

3

1+2«a Ca),

3
~ 3
3= §&| 0_(X3) + 0.,(X3) =&

Repeating the above procedure, we find that

kfl_)
A (7

&)
9

Equationg4) and(9) determine the solution of the bound-
ary value problem(1)-(2). Using these equations, we obtain

the following formula for the strength of the fiel&=
-V

3
- 3 3
o= §[ 0_ () + 604 (Xp) =G (m

N R3 3 |t
- s . ' i
E_A+A§i21{0_(XI)+9+(XI)|I?—C]|3 (1+2a
% R|3 3 i—1 o
_§i=1 0+(X|) |l:>_c>i|3 1+2a 3ni(A'n|) (10)

The characteristic feature of E(L0) is that due to condition

(3) the contributions of various terms change by the order of
magnitude depending on the location. In order to calculate
the field using Eq(10) at the arbitrary point in space without
exceeding the accuracy, one must neglect the small terms
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according to conditioii3). Let us determine the field in the
domain|r—¢|~Ry. In the regionx,=|f—¢,| —R<0, Eq.
(10) yields

k

-

A, (11)

3
1+ 2«

.

Ex=«a

and in the regionx, = |F—¢,| —R>0

3 \k1 RS ,
) [AWL fm@[A—?ﬁk(A' fi)]

(12

Equation (12) implies that the normal component of the

strength of the field at the external surface of kit particle,

k

Epn= A,, (13)

1+ 2«

increases by a factor‘avhena<1.

PHYSICAL REVIEW @& 061402

acts on the particle and causes its translational motion. If the
integral in Eq.(16) can be represented as a sum of integrals
that are invariant with respect to the transformationr
—¢;, then the ponderomotive forces cannot cause the trans-
lational motion of the particle. It is exactly the situation
which occurs in the considered configuration in the frame-
work of the adopted accuracy. However, already in this ap-
proximation the particle is subjected to compressive or ten-
sile stresses that depend upon the location of the particle
inside a cluster, and in this case the main effect is the renor-
malization of a thermodynamic pressure. In principle, the
thermodynamic pressure can be determined by using Eq.
(16) and variational principles of thermodynami@fer de-

tails see Ref[11]). However, in this study we will determine
pressure inside thith particle by using the formula for a
stress tensor and condition of mechanical equilibri(see

Similarly, one can solve a problem when the particles ardXef. [13], Chap. 2, Sec. 15The expression for the stress
aligned normally to the direction of the field. In this case for t€nsor reads

the strength of the field inside theh particle instead of Eq.

(11) we obtain
k

-

A, (14

3a
1+ 2«

=in_
Ey=

and for the field outside thkth particle instead of Eq12),
we obtain

=out__
Ey =

(19

3a \KY 5 L
1724 A+§W[A_3nk(A'nk)]

SEiEk
Aq

Oik=—

eE?
Po(p. T)+ 5 —| Jik+
Condition for continuity of the normal component of the

stress tensor at the surface of the partjetg,],=0 yields

» Ek..
Apx=Dyn(En— B+ 5o (s0—e1),  (17)

whereD=¢E is an electric inductionA py= pj,— Pout IS a
difference between the thermodynamic pressures inside the

The normal component of the strength of the field at thekth particle and in the host medium in the vicinity of the

external surface of thkth particle is

3a k-1

3
out _
E 1+ 2«

kN 14 2a

n

and the tangential component

3a \K

out__ =in _
S~ BT 1520

T

Ill. RENORMALIZATION OF THE THERMODYNAMIC
PRESSURE IN PARTICLES IN THE LINEAR
CLUSTER IN THE EXTERNAL ELECTRIC FIELD

Using the above results, let us determine ponderomotive 3 3
forces acting on the particle in the cluster in electric figld

particle. Substituting the obtained expressions given above,
for the normal and tangential components of the strength of
the electric fieldE, andE into Eq.(17), we obtain
9¢,e0E(A) @
= B 1+2a£co§ 6+ 1+2assm20 :

(18

Apy

Here E, is the strength of the external field, c@®s
=(A-Ep)l|Eo|, a,=gole1, &.=(a,—1)/(1+2a,), and \
depends upon the geometry. When the linear cluster is
aligned with the external fieldy=\,, and when it is normal

to the direction of external fieldy=X\, ,

€

M1 24,

N (19

T1+2a,’

when a patrticle is homogeneous and the charge of the par-

ticle is zero. If the total energy of the electric field,

cE2
W= f —dV, (16)
8

Define thermodynamic pressure averaged over the particle’'s
volume as

aon<t [ A d’r
( mh—vf Pioy3

depends upon the coordinate of the center of mass of a par-

ticle ¢;, then the ponderomotive force with a magnitude

then Eq.(18) yields
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3¢e0E}

- Vi (F) = V. — G+ VX VX (DA, (21
<Apk>V: e ()\2)1( l. k( k k k(

whereA is a temperature gradient far away from the cluster,

The latter equation was derived in REE1] using a different Vi is the asymptotic value of the velocity of the gas in the
approach. In Ref{11] it was showed also that renormaliza- laboratory frame in the region determined by the conditions
tion of the thermodynamic pressure results in substantidif —¢,|> Ry, |F— ¢ |<|¢—C«_4|, and
changes in the dynamics of phase transitions of the first kind
in linear clusters of particles in the presence of electric field. FP)=alf—¢ by 22
Whena<1, ¢~ —1, and(Ap )y~ — (9¥/24m) eE2, i.e., dF)=af=Cd+ e (22
the pressure in the particle decreases exponentially when its
ordinal number in the cluster grows. where the coefficients, and b, are determined from the
boundary conditions.
In the frame attached to thieth particle, the boundary
conditions read

IV. THERMOPHORETIC FORCES IN A LINEAR
CLUSTER OF PARTICLES

Another kind of fields and forces that are renormalized in Vin=0, Vk,T:M(ﬁTk)T, ﬁTozﬁ, (23
the above-described geometfgee Eq.(3)] are thermo-
phoretic forces acting upon macroscopic particles in gasesvhereV, , andV, . are the normal and tangential compo-
The origin of these forces was discussed extensively in thaents of the gas velocity at the surfacekth particle, re-
literature(see, e.g., Ref$6,14] and references therginThe  spectively. According to the results obtained in Sec. I,
mechanism of thermophoretic forces in gases is associated
with a temperature gradient that results in the additional mo-
mentum flux from gas to particle. Consider a case with rela-
tively large particles of sizeR;>1, wherel is a free path
length of gas molecules. In this study, we seek the solutiogvhere the coefficiert can assume two values depending on
for times that are much larger than the Stokes tirgeo that  the orientation of the clustdsee Eq.(19)], coefficienta is
all particles attain their stationary velocities in their motion determined abovgsee Eq(8)], and coefficients., and«, in
due to the thermophoretic forces. We will use the system ofhe formula fora are thermal conductivities of the medium
Stokes equations and neglect convective transfer of thermaind the particles, respectively. The coefficient of thermal slip
energy and buoyancy forces, which can be accounted foy (see Ref[14], Chap. 1, Sec. 14s assumed to be the same
without essential changes in the developed approach. Ther all particles.
problem will be solved in the zeroth approximation in Knud-  We will use Egs.(19), (24) and as before consider only

sen numberKn=I/R<1. Thus, the system of goveming the cases where a cluster is aligned with veétasr normal

3a
1+ 2«

(VT),.= A (24)

equations reads to it. These assumptions simplify the analysis of the obtained
results. The force acting on thh particle and the pressure
ﬁp: ,7V*2\7, V.V=0, V2T=0, (20) in its vicinity are determined by the velocity fieléqgs.(21),

(22)] and are given by the following expressiofsee[12],

where p is pressure andy is a kinematic viscosity. The Chap. 2, Sec. 20

boundary conditions for temperatuflecorrespond to those - - P
for potentialg above, and the boundary conditions for veloc- F=8mawnA, p=pot n(A-V)[VH(N]. (29

ity V() will be presented further. In the stationary regime,

the resultant force acting on the particleﬁy 0. Here one
has to distinguish between the two cases. The first one
when a particle moves uniformly in the laboratory frame
with velocity U, . The second case is when a particle is sta- R ) by ) )

tionary due to the action of the constraint force that compen- V(7)) =V — O+ =——=3[30(A-A)—A], (26)

F_x 3
sates the thermophoretic force aiig-= 0. IF=Cd
Let us consider the first case. Due to condit{8)) we can
neglect the effects of small particles in calculating the field

of the large particle. Conditiof3) also implies that in the
vicinity of the kth particle in the scales of the order of the - - -

particle’s size, the velocity field formed by the preceding Viee=Vg k-1(F) 27

—1 particles can be considered as homogeneous. Létlthe .

particle move with the velocityi,. Then, in the frame at- for [F—Cc_1|~Ry, whereVy . 4(F) is a velocity of gas in
tached to this particle, the velocity field in the vicinity of the the vicinity of the k—1)th particle in the laboratory frame.
kth particle can be written as followsee Ref[12], Chap. 2, Let EJS consider a case where a cluster is aligned with a
Sec. 20 vectorA. Equation(26) and the above arguments imply that

Since a particle moves with a constant velodﬁyt 0, and
according to Eqs(22), (25), a,=0, p=py. Taking into ac-
'Sount the latter relations, Eq&1) can be rewritten as

where fi,= (F—6,)/|F—&,. In order to determind/,.., let
us note that with the required accurdsge Eq(3)],
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FIG. 1. Dependence of the normalized velocity of #ib par- FIG. 2. Dependence of the normalized velocity of #tk par-

ticle vs. the ratio of thermal conductivities of the host medium andfticle vs. the ratio of thermal conductivities of the host medium and
of the particlea= o/« . Cluster is aligned with the external tem- Of the particlea= ko/x;. Cluster is normal to the external tem-

perature gradiend. perature gradiend.
2b in gaseous medium with an imposed temperature gradient.
\7koc:\7kfloc+ #,&_ (28)  The only difference from the previous case is that instead of
TR, Eq. (28) we have
The boundary condition@3) and Eqs(24), (26)—(28) yield - - b1 - 3a
Vkoc:kaloc_S_Aa )\:)\L: f
3 R = 1+ 2«
Ve — 2k, by — M 29
U™ Vi =~ 3 Mk k™ 3 (29) Then, instead of solutiofB0), we obtain that
k=1
where S M 3Ba 1-ATT
Vie Vi =3 T2 T1oh
S« AL and A=A k-1
M= M an =MNTEr 5 N 3a [1-\° .
1+2a 1+2a G — 1m=M ———— 2\ A,

31+2a| 1-\

Solution of the system of Eq$28), (29) reads ) ] ]
The difference from the previous ca&®0) is that here the

2 30 1—\K"1_ velocity of the flow induced by preceding particles is di-

\7,@0—\71%: T34 194 ﬁA, rected in the opposite direction to the velocity caused by the
a 1- L= .
local temperature gradienV{T),. In Fig. 2, we show the
2 3 1k velocity of thekth particle normalized by:A.
o o__c, . °* MR (30) The case with stationary particles is the most simple for
Uy 1o 3 M 1420 1— ) . . . . .
+2a A the experimental investigation of these phenomena. In this

case, the particle’s velocitiag =0 and the velocity field in
Where\71ﬂ is the velocity of the surrounding fluid far away the vicinity of thekth particle, i.e., forlf—¢,|~Ry, can be
from the cluster in a laboratory frame. F¥f,,=0 andk  Written similarly to Egs.(21), (22). Thus, we can present
=1, Eq.(30) recovers the expression for the thermophoreucvk(r) as follows:
velocity of a single particle due to an imposed temperature
gradient. The physical meaning of the obtained results is

quite transparent. It implies that the velocity of tkih par- VK= A~ I5 6k| [A+ fi(A- 1]
ticle is the sum of the velocity due to a local temperature b
gradient ﬁT)k and velocity of a fluid induced by motion of + ﬁg[gﬁk(,&. fiy) ~Al. (3D

the preceding particles in the cluster. In Fig. 1, we show the

velocity of thekth particle in the cluster normalized byu?. . .
Now consider the case where a cluster is aligned in th(l.\\IOte that the constant term in formu(@l) can be written as

direction normal to the field gradient. It must be noted that inBkA, Where coefficien, is to be determined, only in two
contrast to the previous case, such geometry has a restrictivaises, namely, when a cluster is aligned with vedtoor
physical meaning since configuration of the cluster variesiormal to it.

during motion in this case. Nevertheless, it allows us to ob- Hereafter we will assume that, far away from the cluster
tain some useful information about the behavior of particleghe gas is at rest so th@; =0. Then, using the boundary
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conditions(23) for the velocity of the first particle, we obtain 3.5
the known resulfsee Ref[8], Chap. 1, Sec. 14 s [\
1 R \
V(F)Z—T /&‘f‘ﬁ /&ﬁ)—T 2.5 k=5
1 F—c,] [ 1( 1] F—c,? \/
o 2
=l
X[ 3, (A-fi)—A]l, (32 w 1.5N(k=4
. L - 1 k=3
where a; = — u4R4/2. This velocity implies the forcd, k=2 K=1
=8ma;nA and a pressure fielg,=25ay(A-V)1/|F—¢&| 0.5y
+po. In the region|F—¢;|~Ry, 0 ——
0 1 2 3 4 5
N . N R ong o
V1: _MlA Sin 017’1, =", - (33)

96y FIG. 3. Dependence of the normalized thermophoretic force act-

The total force applied on the particle is determined by tw ing on thekth particle vs. the ratio of thermal conductivities of the
?ﬂ}

contributions. The first one is due to the pressure gradie ost medium and of the particl;ef Kolky. Clusteris aligned with
induced by preceding particles, and the second one is due e external temperature gradieht

rﬁeggiwzozvjrgg:iii E)e/ 3gnlsrig2?§§dsggggf§3u; dgtrr?g;/egb_this case, Eq(33) implies that there exists a flow induced
pend differently on the particle size. The force due to presby the first particleV, = w,A. Therefore in this case, apart
sure gradientR? and sharply decreases with the decrease off o™ the local flow, there exists a flow induced E)y theapre-
the particle size. Let us determine the force induced by théeding particles. Since due to conditié® Vi(f) at |7
gas flow. First consider the case when particles are aligned ¢,_;|~R,_; is an asymptotic value foV,(f) at |F— ¢
with the imposed temperature gradight Equation(33) im- >Ry,
plies that the first particle does not induce a flow in the

direction of a temperature gradient. Therefore, the second Bi=PBi_1— 81 n By—1 _ (36)
particle is not subjected to the external flow caused by the KPR R, Rké,l
first particle, and in Eq(31) for k=2, B,=0. The latter im- N ]
plies thatg,=0 for all k. Thus gas velocity in the vicinity of The boundary condition&3) yield
the kth particleV,(F) is given by Eq.(32) where index 1 is a. by a, b,
replaced byk, and a forceF, is determined by the following B2 5~ 53|=0, Bk |n To3|=uk-  (B7)
formula: Re R Re R
o 3 \k-1 Solving Egs.(36) and(37) we find
sz—lzﬂﬂﬁm m RKA (34) 3a K—1
. _ _ o B=tk-1= M T 24]
For a givenk, the force applied on the particle attains its
maximum whena=1/2(k—1): 3R, 3a K1
= . 3 e . " %=1 (1+2a) | 1+2a)
Fk,max:_FOZ(k_ 1) 1_E . Fo=12munAR,. .
—4a
(35) bk= ay—— — RE (38)

3
In the limit k>1,

gk-1 The forcelfl is still determined by Eq(34) for k=1, and

lfk,maXI—lfom. forces applied on the other particles in the cluslfqgrare
determined by the following expression:

Note that in the case of one particle the maximum force is 1 30 K1
attained wherw>1, i.e., when thermal conductivity of a host ﬁk: 6Ty ——— ( - Rk,&, k=2. (39
mediumx, is much larger than the thermal conductivity of a 1+2a\1+2a

particle ;. However, in a cluster with a large number of
particles, the maximum force is applied on the particles with R
a high thermal conductivityr<1. In Fig. 3 we show the Value ofF is a=(k—1)/2 and
dependence df,/Fj vs a. - 1 .

Now consider a case where stationary particles are £ :@(E) 1 ( 3 E) (40)
aligned in the direction normal to the temperature gradient. kmax— 5 (k—1) k)’

For a givenk the magnitude ofx providing the maximum

2
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V. [ 3a \*' 3 R 1
uA, 142« 4|F—GJ 1+2a
o[ 14 1% R 41
IR “

Thus, the magnitude of velocity of gas increases in small
scales so thaV ~[3a/(1+2a)]< *A.

V. CONCLUSIONS

In this study, we showed that a linear cluster of particles
consisting ofN spherical particles embedded in a viscous

FIG. 4. Dependence of the normalized thermophoretic force acthost medium amplifies various static fields. The simple ge-
ing on thekth particle vs. the ratio of thermal conductivities of the ometry considered in this investigation allows us to experi-

host medium and of the particte= ko /«, . Cluster is normal to the

external temperature gradieﬁt

mentally verify the considered effects. The predicted effects
can also be of interest for various environmental and techno-
logical applications, e.g., dynamics of atmospheric and com-

where ﬁo is determined above. In Fig. 4, we show the de-bustion aerosols, soot formation, nanotechnology, etc. The
pendence oF, /F, vs a. We will not write a general expres- obtained results imply the feasibility of separating fine par-

sion for velocityV,(F), but present expressions for norma
and tangential components of the velocity in the basic s

(ny,7) normalized byuA, and uA ., respectively:

k—1

Ve [ 3a 3 R 1
wA, | 1+2a 2 |F—¢J 1+2a
. 1-4a RE

| ticles from the suspension by injecting into the mixture the
e[Particles with the intermediate size.
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